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Abstract
First-principles simulation, meaning density-functional theory calculations
with plane waves and pseudopotentials, has become a prized technique in
condensed-matter theory. Here I look at the basics of the suject, give
a brief review of the theory, examining the strengths and weaknesses of
its implementation, and illustrating some of the ways simulators approach
problems through a small case study. I also discuss why and how modern
software design methods have been used in writing a completely new modular
version of the CASTEP code.

1. Overview

The simulator builds a model of a real system and explores its behaviour. The model is a
mathematical one and the exploration is done on a computer, and in many ways simulation
studies share the same mentality as experimental ones. However, in a simulation there is
absolute control and access to detail, the ability to compute almost any observable, and given
enough computer muscle, exact answers for the model. These strengths have been exploited for
the last fifty years and have led to many advances in the theory of condensed matter. However,
it is only in the last fifteen years or so that we have been able to compute the properties
of condensed matter from first principles. The first-principles approach is vastly ambitious
because its goal is to model real systems using no approximations whatsoever. That one can
even hope to do this is down to the accuracy of quantum mechanics in describing the chemical
bond. Dirac’s apocryphal quip that after the discovery of quantum mechanics ‘the rest is
chemistry’ sums it up: if one can solve the Schrödinger equation for something—an atom, a
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molecule, assemblies of atoms in solids or liquids—one can predict every physical property.
Perhaps Dirac didn’t realise quite how difficult doing ‘the rest’ is, and it has taken great effort
and ingenuity to take us to the point of calculating some of the properties of materials with
reasonable accuracy from small model systems! However, to focus limitations is to miss the
point: the impact of simulations on our thinking about condensed matter problems is immense.

Here I shall concentrate on just a few elements of what is a very large subject. First I shall
discuss the first-principles rationale and what makes the task so difficult. I shall focus on one
of the most successful approaches, the application of density-functional theory using plane
waves and pseudopotentials, and consider why this method turned out to be so important. I
shall also spend some time discussing the simulation approach in general, and the types of
information that come out of a calculation. To illustrate the application of these methods I
shall present highlights of an extensive study of the adsorption of water on an oxide surface,
a problem that has turned out to be surprisingly difficult.

In reviewing the methodology I shall in the main look at practicalities rather than the full
details of the formalism. This is because I hope to cover a few topics that seldom appear
in the literature, and because the formal theory and its implementation are already treated in
many excellent reviews [1–9]. Throughout I have slanted things towards the ‘user’ and the
non-specialist.

Finally, I shall describe briefly the latest developments around the CASTEP computer
code. Traditional scientific programming has many shortcomings which are serious for large
and complex codes such as those required for modern first-principles calculations. With this
in mind, CASTEP has been redesigned and rewritten completely. The primary aim of this is to
make new developments as rapid and reliable as possible. This is achieved through a modular
design which embodies the ideas of data abstraction and encapsulation. Consider that our
codes are more than just the ‘equipment’ we use to probe condensed matter, they are also the
language and notation we use to implement new theoretical approaches. In new CASTEP we
strive to make this language flexible, powerful and ideal for the task.

2. Theory

2.1. The first-principles rationale

Quantum mechanics provides a reliable way to calculate what electrons and atomic nuclei do
in any situation. The behaviour of electrons in particular governs most of the properties of
materials8. This is true for a single atom or for assemblies of atoms in condensed matter,
because quantum mechanics describes and explains chemical bonds. Therefore we can
understand the properties of any material from first-principles, that is, based on fundamental
physical laws and without using free parameters, by solving the Schrödinger equation for
the electrons in that material9. This, however, is a tall order. We rapidly run into difficulty
because electrons interact strongly with each other. The alarming consequence is that exact
pencil-and-paper solutions exist only for a single electron in simple potentials: solving the
Schrödinger equation for the hydrogen atom is a classic undergraduate task, but solving it for
helium requires a computational approach. The problem of interacting electrons in condensed-
matter physics, one manifestation of the many-body problem, is the defining challenge of the
subject.

8 Setting aside nuclear processes.
9 Because electrons are so much lighter than atomic nuclei it is possible to freeze the positions of the latter while
dealing with the former. The idea is that the electrons move so rapidly compared to the nuclei that they are always in
the ground state. This is the Born–Oppenheimer approximation.
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Despite this difficulty, one can read dozens of papers each week describing the application
of first-principles calculations to systems containing hundreds or thousands of atoms and
electrons, yielding accurate, quantitative information. This is a great triumph of condensed-
matter science, and it has changed for good the way we approach the subject. How is it then
that we can do these calculations?

2.2. Coping with interacting electrons

For practical calculations on condensed matter, most first-principles approaches recast the
problem from one where electron interactions are explicit to one where the interactions
are represented by an effective potential acting on apparently independent electrons. The
interactions are ‘hidden’ in the effective potential, and one deals with one electron at a time.
The result is a set of one-electron Schrödinger-like equations:

Hψn =
(

− h̄2

2m
∇2 + Vext + Veff

)
ψn = εiψn . (1)

Here, ψn are the n one-electron wavefunctions, Vext is the external potential of the nuclei10,
and Veff the effective potential. The methods used to achieve this trick may or may not rely
on neglecting part of the e–e interaction, but almost always involve writing part of it in a
mean-field manner. However, it is not necessary at this stage to make any approximations at
all, since what is left out of a mean-field term may be added back elsewhere.

An early approach was developed by Hartree. He set Veff to the average of the Coulomb
potential between an electron and all others in the system, giving what is now called the
Hartree potential. An electron experiencing this potential is said to move in the mean field of
the other electrons. Of course this is an approximation, and for two reasons. In the real case
the interaction depends explicitly on the position of the other electrons. Something is missed
when the interaction is averaged to form Veff . Also, electrons are fermions, and they obey the
Pauli exclusion principle and Fermi statistics. This gives rise to an effective interaction, called
the exchange interaction, which is not accounted for. The Hartree approach neglects exchange
and correlation, and as one may guess it gives rather poor results.

Adding Fermi statistics to Hartree’s method yields the Hartree–Fock approach. The
effective potential is now non-local, and arises from the demand that the total wavefunction
be antisymmetric upon exchange of any two electrons [10]. The exchange interaction is
treated exactly, but the method remains inherently approximate because it neglects correlation.
Nonetheless it has enabled advances in quantitative theory and structural studies of molecules
and solids, and remains the platform on which highly accurate quantum-chemical theories are
built.

2.3. Density-functional theory

Density-functional theory (DFT) takes a radically different approach than the foregoing
wavefunction methods. It is both a profound, exact theory for interacting electrons [11], and
a practical prescription calculating in terms of single-electron equations [12]. Its contribution
in both these respects received the highest recognition with the award of the Nobel prize for
chemistry in 1998 to Walter Kohn and John Pople [13]. It has become a runaway success,
enabling great advances in practical first-principles calculations. DFT is predicated on two
deceptively simple principles [11, 14]:

10 It may of course arise from other influences on the electrons, such as an applied electric field.
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• The total energy of a system of electrons and nuclei is a unique functional of the electron
density

• The variational minimum of the energy is exactly equivalent to the true ground-state energy

An alternative form of the first principle is that the density uniquely determines the potential
acting on the electrons, and vice-versa. Noting that the energy is a functional of this potential
brings us to the statement above11. The second principle is a variational statement for the
energy in terms of the density.

The beauty of DFT is that one makes no attempt to compute the many-body wavefunction.
Instead the energy is written in terms of the electron density. This seems to be a quite remarkable
step, throwing out the fearsome complexity of a multidimensional wavefunction and instead
working with a simple scalar field. The degree of simplification is immense, yet the theory
remains completely general. The energy is written as

E = E[ρ(r)] =
∫

drVext (r)ρ(r) + F [ρ(r)] . (2)

Both right-hand terms in this equation are functionals: in the same way that a function gives
a number from a variable, a functional gives a number from a function [15].

Working with a density functional of the energy does not mean that the e–e interaction is
approximated. DFT asserts that the state energy is given exactly for any density12, no matter
what arrangement the electrons that generate that density are in. It connects this to the true
ground-state energy for a given external potential via a variational principle. It also asserts the
existence of an exact functional that by construction handles exchange and correlation in any
situation. What it does not do is to tell us what that functional is, or how to find it.

The practical tools for applying DFT are the Kohn–Sham (KS) equations [12]. These are n

Schrodinger-like equations for n non-interacting electrons moving in an effective potential, just
as in equation (1). They arise when the second (variational) principle of DFT is applied to the
energy functional, with the density written in terms of the wavefunctions of the non-interacting
electrons13:

ρ(r) =
N∑

n=1

ψ∗
n (r)ψn(r) . (3)

Then F is written in as:

F [ρ(r)] = EK [ρ(r)] + EH [ρ(r)] + Exc[ρ(r)] . (4)

Here, EH is the familiar Hartree Coulomb term, which as mentioned, does not include exchange
and correlation effects. The electron kinetic energy is given by EK , and it is defned as the
kinetic energy of a system of non-interacting electrons that gives rise to the density ρ(r). The
exchange-correlation functional Exc is defined to be whatever is needed, and therefore not
present in EK + EH , to make F [ρ(r)] exact. In the KS equations the effective potential is the
Kohn–Sham potential, defined as the functional derivative

VKS(r) = δ

δρ(r)
(EH [ρ(r)] + Exc[ρ(r)]) = VH(r) +

δExc[ρ(r)]

δρ(r)
. (5)

11 In fact, not only the energy but all ground-state properties are determined by the density: the potential, the
wavefunction, the Hamiltonian and so on. See page 51ff of reference [1].
12 More exactly, for all N-representable densities, which are those arising from an antsymmetrized wavefunction.
This means any ‘reasonable’ density, requiring only that (a) the density is non-negative, (b) it is normalized, so that
its integral gives N electrons, and (c) that it is continuous in the sense that

∫
dr‖∇ρ(r)1/2‖2 � ∞. See [1, 16, 17].

13 A density of this form is said to be non-interacting v-representable. This simply means it is associated with the
solutions of a set of Hamiltonians for N independent electrons. This is a stronger restriction than N -representability,
and in fact not all densities are v-representable. This rarely matters in practise because the exceptions are those which
require a full many-body treatment, and for which a ground-state, single-determinant theory is inapplicable. Once
again, reference [1] has a good discussion.



First-principles simulation: ideas, illustrations and the CASTEP code 2721

But why do we need to swap a single equation in the density (equation (2)) for a system
of n equations, and in the process re-introduce wavefunctions? The answer is that it is
an excellent means of treating the kinetic energy properly. Efforts to find a direct route
to EK [ρ], starting from the early Thomas–Fermi theory [18, 19], have not yielded accurate
prescriptions. Calculating EK indirectly14, that is, from the one-electron wavefunctions rather
than the density, gives the major part of the kinetic energy exactly, with the remainder accounted
for in the exchange-correlation functional. The cost is a considerable loss of simplicity, but
this is worth paying. It is important to note that the wavefunctions ψn are really auxiliary
quantities that are there simply to make the maths work: however, there is plently of evidence
that the KS wavefunctions do have physical meaning, but the interpretation needs care.

One must bear in mind that although one deals with apparently independent electrons,
the e–e interactions are still present, hidden in Veff (equation (1)), and they have important
consequences for the solution of the KS equations, or indeed any equations like equation (1).
Because the effective potential depends on the density and hence the ψn, the solutions for the
latter must be self-consistent. This means that the KS equations and equation (5) must be
satisfied together by the same ψn. In practise, solutions for ψn are found for a fixed Veff ,
then the latter is updated. The procedure is repeated until self-consistency is achieved. I’ll say
more on how this is done in section 3.3.

2.4. Making DFT tractable: approximate functionals

At first sight, DFT has done nothing more than repackage an impossible problem. All the
complexity of interacting electrons is still there, and the task of finding a functional Exc that
embodies the required information seems just as hopeless as that of calculating the exact
many-body wavefunction for hundreds of electrons. What saves us is that very simple-
minded approximate functionals work, and they work incredibly well. The most widely-used
approximation is the local-density approximation (LDA) which was introduced by Kohn and
Sham along with the KS equations. The LDA states that Exc can be given by assuming, for
each infinitesimal element of density ρ(r)dr, the exchange-correlation energy is that of a
uniform electron gas of density ρ = ρ(r). Then,

Exc =
∫

drρ(r)εxc(ρ(r)) , (6)

where εxc(ρ) is the exchange-correlation energy per electron in a uniform gas of density ρ.
The LDA is clearly wrong, because the charge density is highly non-uniform around atoms.
However, the uniform electron gas remains the only system for which Exc can be calculated,
and hence from which εxc[ρ] can be constructed [20]. The LDA seems patently wrong, but it
works: its justification is unashamedly post-hoc, taking the form of thousands of successful
applications which prove it to be remarkably useful and capable of yielding accurate calculated
properties for many systems. In some cases though the LDA description is poor. Recognising
that LDA failures must in part be due to ignoring spatial variations in the density, functionals
have been developed that include dependence on the gradient of the density. This scheme
goes under the name of the generalized-gradient approximation (GGA). The GGA improves
predicted binding and dissociation energies, especially for hydrogen-containing systems [21].
Almost all workers use the LDA or GGA in one of the several parametrizations available.

Despite the success of the LDA and GGA they are far from ideal, and finding an accurate
and universally-applicable Exc remains the great challenge in DFT [1]. In fact, we can be
sure of only two things with functionals: that the universal density functional exists, and

14 As the sum of expectation values of the kinetic energy operator, < ψn| − h̄2

2m∇2|φn >.
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that we shall never find it. Practical Exc functionals are the major approximation made to
DFT: they are not derived from first principles, but are postulated from physically reasonable
assumptions, and their use is justified a posteriori by their success. Some may argue that the
first-principles ideal is lost by making these approximations. The reality is that the theory
must be made practical, and moreover practical for calculations on systems large enough to
model condensed phases realistically. The spirit of the approach remains intact though: it is
always to make as few approximations as necessary, to drive them ever lower, and to accept
the predictions the resulting scheme gives.

3. Machinery

One of the most successful styles of DFT calculation has become synonymous with Roberto Car
and Michele Parrinello. Their seminal paper [22] was a turning point in the first-principles story,
not because it introduced new theories or radical methods, but because it showed which key
elements could be combined to make very efficient calculations possible. Broadly speaking,
five features characterize the Car–Parrinello approach:

(a) A plane-wave basis to represent the wavefunctions
(b) Pseudopotentials replacing the ionic cores
(c) The use of fast-Fourier transforms (FFT’s)
(d) Minimization of the total energy to find the ground state (originally via simulated

annealing)
(e) ‘Fictitious dynamics’ for the electrons in a unified Lagrangian formalism for molecular

dynamics

Not all of these need be used together, and in fact several groups pioneered the approach,
each with its own emphasis. For example, the drive towards large-scale calculations and the
exploitation of parallel computers was headed by Mike Payne with his conjugate-gradients
approach [2, 23] in the CASTEP code. These methods are united by the use of plane waves,
pseudopotentials, FFT’s and some form of minimization. I shall use the terms plane-wave
pseudopotential (PWP) and first-principles to mean an approach of this kind.

3.1. Supercells, plane waves and pseudopotentials

Plane waves and pseudopotentials are a hallmark of the method, and they form a very natural
alliance. They are so fundamental that their strengths and weaknesses deserve special attention.

In the PWP method the model system is constructed as a 3D periodic supercell which
allows Bloch’s theorem to be applied to the electron wavefunctions:

ψn,k(r) = un,k(r) exp(ik · r) . (7)

The function u(r) has the periodicity of the supercell. It can be of any suitable mathematical
form, and usually one chooses a series expansion in terms of a set of basis functions. In PWP,
plane waves are used for this expansion, so that each single-electron wavefunction ψn,k is
written as

ψn,k(r) =
∑
G

un,k(G) exp(i(k + G) · r) . (8)

The un,k are the expansion coefficients. The wavevectors G are such that the plane waves
are commensurate with the supercell. Both the number of G-vectors in the sum and the
number of k’s considered should in principle be infinite. The exponential term is a plane
wave of wavevector k which must be commensurate with the entire system (i.e. not just the
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periodically-replicated cell). For an infinite system there is an infinite number of k vectors, at
each of which solutions for ψn,k exist. This simply reflects the fact that the number of electrons
is infinite. However, a great simplification comes about when one realises that the change in
ψn,k with k becomes negligible for k-points that are close together. This means that one may
calculate at a finite number of k-points. We speak of this idea as k-point sampling. The set of
vectors {G}, on the other hand, should in principle be infinite to obtain an exact representation
of the wavefunction. This is never necessary because summing over a finite number of G’s
will yield sufficient accuracy. Keeping this number small enough for practical purposes is still
a technical challenge, as discussed later. Note that the {G} is usually chosen as the set of points
on a regular grid covering reciprocal space. The subject of grids is discussed further in section
3.2.

A plane-wave basis set has many advantages:

• It is unbiased, so all space is treated the same
• It is complete15

• There is a single convergence criterion
• Plane waves are mathematically simple, and their derivatives are products in k-space
• Plane waves do not depend on atomic positions

and one or two important disadvantages:

• The number of plane waves needed is determined by the greatest curvature of the
wavefunction

• Empty space has the same quality of representation—and cost—as regions of interest

The advantages speak for themselves. The first three mean that one can always ensure that
the basis set is adequate for a calculation by increasing the number of plane waves until the
quantity of interest stops changing. In other words, the quality of the basis set depends on a
single parameter, usually expressed as the energy a of free electron whose wavefunction has
the same wavevector as the largest wavevector in the plane-wave basis,

Ec = h̄2(G + k)2

2m
. (9)

All plane waves of ‘energy’ less than the cutoff energy Ec are used in the expansion.
This guarantee is incredibly valuable: ask anyone who works with a local basis set. The
mathematical simplicity of plane waves means the method is easier to implement, crucially
so for the calculation of ionic forces which adds little complexity or cost to the calculation.
Equally important in this context is the originless nature of plane waves. Their independence
from atomic positions means that the forces do not depend on the basis set—there are no
‘Pulay’ or ‘wavefunction’ forces16. Even more important, new developments are easiest in
plane-wave codes. An idea to calculate a property is most rapidly realised in a plane-wave
basis, and even if other methods catch up in time, the plane-wave approach remains as the
reference.

From a computational viewpoint the first of the disadvantages appears to be very serious.
Remember that in studying condensed matter one is interested mainly in the valence electrons

15 Completeness, in a mathematical sense, means that the members of the basis ‘span all space’. A crude way of
thinking this means that given enough members of the basis in the expansion, any function can be represented to
arbitrary accuracy.
16 This is true even if the basis is incomplete, as it always is in practise. Changes in cell shape and size do produce
Pulay terms in the stress, since the basis is altered by cell changes. One should also note that there is always some
error in the forces due to residual non-self-consistency, since a numerical calculation can never be fully self-consistent.
This rather subtle matter is discussed in reference [8]
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and what they do, and as is well known from theory, a free-electron (plane-wave) picture is not
terrible for valence states. However, the valence wavefunction is far from free-electron like near
atomic cores. It varies very rapidly, both because of the strong Coulomb potential there, and
the requirement for the wavefunction to be orthogonal to core electron states. For the localized,
tightly-bound core states matters are even worse. Millions of plane waves would be required
to represent the electronic wavefunctions accurately. A combination of pseudopotentials and
FFT’s is used to overcome this problem. A pseudopotential replaces both the atomic nucleus
and the core electrons by a fixed effective potential that in a special sense reproduces the
effect of the nuclear potential and the orthogonality requirement. Crucially, we can arrange
things so that the pseudopotential is weak compared to what it replaces, and therefore the
curvature of the valence wavefunctions in the core regions is much lower. In addition there
are fewer electrons in the calculation, because the core electron have been removed. FFT’s
give an efficient means of transforming the wavefunctions and charge density between real
and reciprocal space. The advantage to this is that parts of the calculation scale differently in
the two spaces, and therefore they are done in the ‘cheaper’ space.

There are two reasons why we can play with the valence wavefunctions near to ionic
cores. Firstly, the details of the valence wavefunctions near atomic nuclei are unimportant
to the bonds they form, and it is these bonds that are crucial in determining most material
properties. Secondly, it is often true to an excellent approximation that core orbitals are
unaffected by a change in the environment the atom finds itself in. If this is not true, changes
in core orbitals will influence the valence electrons and hence change the properties of interest,
and preclude the use of a fixed pseudopotential. This idea of transferability is a key one in the
construction of pseudopotentials.

Modern pseudopotentials are constructed from first principles. The basic idea is to replace
the real potential, arising from the nuclear charge and the core electrons, with an effective
potential, within a core region of radius rc. Certain demands are then placed on this effective
potential. It must be such that the valence orbital eigenvalues are the same as those in an all-
electron calculation on the atom17. It must also preserve the continuity of the wavefunctions
and their first derivatives across the core boundary. Finally, integrating the charge in the core
region should give the same answer for the pseudo-atom and the all-electron one, that is, the
pseudopotential must be norm-conserving. A pseudopotential that satisfies these demands
also has the same scattering properties, at energies corresponding to valence eigenvalues, as
the ionic core it replaces. In fact, norm conservation ensures the scattering properties remain
correct away from the eigenvalues to linear order in the energy [14]. Norm conservation also
ensures that the electrostatics of the pseudoatom are approximately correct outside the core
region. Note that for an atom spherical symmetry leads to angular momentum quantization,
and therefore for each value l the construction may be done differently. If it is, the potential
is said to be ‘non-local’. A non-local potential acts differently on wavefunctions of different
angular momenta.

There are two problems with all this. Firstly, what valence electronic configuration does
one work with? Ideally, if the pseuodpotential were completely transferrable, it would not
matter. In practise, for some elements, and especially for norm-conserving pseudopotentials,
one obtains a markedly different pseudopotential from a neutral atom and an ionized one.
Clearly this does matter. Take NaCl as an example. To a good approximation the the crystal
contains Na+ and Cl− ions, not neutral atoms. As a more extreme example, oxygen in MgO,
UO2, TiO2 and many other oxides can be viewed as an O2−ion. Like it or not, because

17 Of course, the two calculations are performed within the same theory. Here that means DFT with an appropriate
choice of exchange-correlation functional.
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pseudopotentials are different for different valence electronic structures18, they have to be
constructed according their target environment19. A related question is, which electrons are
core electrons and can be pseudized away? In some cases this is a clear-cut matter, but in
others, notably the transition metals, the overlap of valence (bonding) and core states blurs
the distinction. Of course one can always treat these ‘semi-core’ states as valence states but
the pseudopotential will be correspondingly stronger and Ec higher20. The second problem
is that one can never guarantee that valence eigenvalues for pseudopotentials are identical to
the all-electron eigenvalues across the entire range of valence-band energies. This means that
even in the most favourable cases there is still some approximation in using a pseudopotential
constructed from an isolated atom in condensed-matter calculations.

Though successful in many cases. norm-conserving pseudopotentials for first-row and
transition-metal elements require very large basis sets and high values of Ec, despite the best
attempts to optimize their performance [25, 26]. Vanderbilt [27, 28] realised that by relaxing
the norm-conservation requirement for the valence wavefunctions, ultrasoft pseudopotentials
could be generated, requiring far fewer plane waves for a given accuracy. In his scheme
the charge within the pseudopotential core comes from a ‘hard’ augmentation function, and
the ‘soft’ valence states. Relaxation of norm conservation loses the guarantee of correct
scattering properties to linear order in the valence eigenvalues. To compensate, ultrasoft
pseudopotentials use several reference energies, usually two or three, that span the valence
band, with a set of projectors for each reference energy. Experience seems to show that ultrasoft
pseudopotentials are much more transferable than their norm-conserving counterparts. In fact,
it is simply not necessary to use anything other than the neutral atom in the generation of
ultrasoft potentials. Typically Ec is half that for a norm-conserving pseudopotential, which
means less than one-third as many plane waves are required. Even with multiple projectors,
ultrasoft pseudopotentials are significantly more efficient.

The forgoing discussion should have revealed that the construction of pseudopotentials is
a non-trivial business. After Exc, the use of pseudopotentials it is the next most serious source
of approximation in the method—and if the pseudopotentials are badly-constructed it becomes
the major source of approximation. However, careful construction and testing will produce
accurate potentials for any element, provided that one pays any concomitant computational
cost.

3.2. Grids and FFT’s

Real- and reciprocal-space grids are another key feature of the PWP method, and a brief
digression is needed to discuss them. Expressing the wavefunction as an expansion in a
finite set of plane waves leads naturally to the idea of a reciprocal-space grid. However, it is
advantageous to have a real-space representation too, on the related real-space grid. FFT’s are
used to transform the data between the two spaces in a highly efficient manner.

We denote the direct lattice vectors (the sides) of the real-space supercell a1, a2 and a3.
The reciprocal lattice vectors bi are defined by the relation ai · bj = 2πδij . In practise we
construct the bi using

b1 = a2 × a3/(a1 · a2 × a3) , (10)
18 The cart is before the horse here. The physical reason is that the core electron configuration changes, albeit slightly,
depending on the environment.
19 Confusingly, this does not mean the pseudoatoms must be fully ionized. Rather, it is often enough to consider a
partly-ionized pseudoatom. Neither is it necessary to use the same electronic configuration for all angular momentum
channels.
20 Alternatively, so-called non-linear core corrections may be applied to Exc [24]. This is much cheaper, but less
accurate.
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b2 = a3 × a1/(a1 · a2 × a3) , (11)

b3 = a1 × a2/(a1 · a2 × a3) . (12)

A reciprocal lattice vector G is given by

G = n1b1 + n2b2 + n3b3 , (13)

where ni are integers. A plane wave exp(iG · r) is commensurate with the supercell, and the
set plane waves whose wavevectors are defined by equation (13) is an orthogonal set. The
real-space grid is formed by dividing the lattice vectors a1, a2 and a3 into N1,N2 and N3

points. A point in the supercell is then denoted

r(l1, l2, l3) = l1

N1
a1 +

l2

N2
a2 +

l3

N3
a3 , (14)

where the li are integers in the range 0 � li � (Ni − 1). We can view the real-space grid as
the lattice of points for the lattice vectors αi = ai/Ni . The corresponding reciprocal lattice
vectors are given by βi = Nibi because of the relation αi · βj = 2πδij . The vectors βi are
the reciprocal-space supercell vectors. The reciprocal-space grid is the lattice of points for
the vectors bi . Within the reciprocal-space supercell a point is given by equation (13) with
0 � ni � (Ni − 1). In each supercell there are N1N2N3 = N points. These relationships
are depicted in figure 1. One could say that discrete Fourier transforms, or at least plane
waves, impose these relationships between the grids. The products G · r are independent of
the supercell dimensions.

Figure 1. Real- and reciprocal-space grids, vectors and supercells. For clarity the figures show
two-dimensional spaces.

Equation 8 can now be seen to be a discrete inverse Fourier transform of the wavefunction
from reciprocal space to real space on grids of N points. The forward transform gives the the
wavefunction on the reciprocal-space grid:

un,k(G) = 1

N

∑
r

ψn,k(r) exp(−i(k + G) · r) . (15)
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The summation goes over the N points on the regular real-space grid.
Note that quantities expressed as functions of r or G on the grids, that is, at points given

by equations (13) or (14), are related exactly by the transforms of the kind in equations (8) and
(15). If their values are exact at the points in one space, their Fourier transforms will be exact
at the points in the other space. In the PWP method this turns out to be a great advantage. This
is because the calculation can be split into terms that are easier to calculate in reciprocal space
or in real space, and the wavefunctions and the density are transformed between the spaces to
take advantage of this. For example, the evaluation of the electron kinetic energy is a simple
(diagonal) sum over the wavefunction coefficients in reciprocal space. However, this would
be of no use if the computational cost of the transforms outweighed the advantage of working
in a particular space. This is where FFT’s come in. Fast-Fourier transform algorithms scale
as N log2(n) instead of as N2 for a direct application of equations (8) and (15). A typical
grid size in a PWP calculation is N ∼ 1003, so the difference in scaling has a huge effect on
the computational workload. In addition, FFT algorithms, because they are widely used, are
usually available in highly optimized form within numerical libraries. In summary, although
pseudopotentials reduce the number of plane waves required that number is still large: FFT’s
play a role of equal importance because they allow the calculation to scale well with system
size.

3.3. Finding the ground state

The original Car–Parrinello paper emphasized the use of an ‘extended Lagrangian’ in which
the wavefunction coefficients un,k are treated as dynamical variables2122. This is a very smart
idea, leading to a unified scheme for treating the electronic structure and the motion of ions in a
single molecular dynamics (MD) framework. The formalism could be used for MD of ions and
electrons simultaneously, or with some form of damping was applied to the electronic degrees
of freedom, for minimization of the total energy. What turned out to be the key feature was
the use of minimization to reach the electronic ground state, rather than direct diagonalization
(of the KS equations) used in traditional self-consistent field (SCF) methods. Many workers
use variants of conjugate gradients minimization instead of the simulated annealing of the
electronic variables proposed by Car and Parrinello [2, 6, 7]. The arguments about which is
better are still going on [6, 8], but the truth is that either can possess the advantage depending
on the system under study and the kind of calculation, and both are vastly more efficient
than diagonalization of a huge matrix of plane-wave coefficients. Note that DFT relies on
the variational principle, and the KS equations are derived from it. When a system is at its
variational minimum the solutions of the KS equations (the wavefunction coefficients) are
self-consistent ones.

As for FFT’s, it is better scaling with system size that gives minimization methods their
advantage. The computational cost and the storage requirement of matrix diagonalization
scale as N3

pw and N2
pw respectively, where Npw is the number of plane-wave coefficients. For

conjugate gradients minimization the scaling becomes N2
pw for the computation and Npw for

the storage23. Typically, Npw = 100 × NI , the number of ions. All of this means that where

21 Associating fictitious masses with the electronic coefficients allows one to write equations of motion for them.
Moreover, if the masses are small enough to lead to separation of the ionic and electronic frequency spectra, adiabatic
dynamics may be achieved, keeping the system near to the Born–Oppenheimer surface automatically. These ideas
are subtle: for further discussion see references [5] and [8].
22 It’s a slight irony that nowadays first-principles calculations are associated mainly with plane waves,
pseudopotentials, FFT’s and minimization, not fictitious dynamics.
23 The same scaling holds for fictitious dynamics, though for a given system the cost of a ‘step’—a minimization
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conventional matrix diagonalization was limited to systems of a few atoms, minimization
approaches could handle hundreds.

Some elements of traditional SCF methods have recently been ‘rediscovered’ and applied
in the PWP approach. In particular it has been found that density-mixing schemes greatly
increase efficiency, especially for metals [6]. In these schemes the update of Veff does not use
the new density given by the KS wavefunctions in its entirety. Rather, the new density is mixed
with the old, according to one of the various prescriptions that exist for this mixing [6]. For a
fixed Veff CG minimization may still be used, of course. The disadvantage of density mixing
schemes is that they are non-variational. The most annoying consequence of this is that the
ionic forces may be very hard to converge.

3.4. Computers

Aside from all the ingenuity spent on theories and algorithms, there is another factor which
drives forward first-principles applications: computers just keep on getting faster. A cheap
personal computer of today is close on six orders of magnitude quicker than the best research
machine available in the 50’s. Roughly speaking, processors have doubled in speed every
2–3 years, and this trend shows no sign of abating. PWP is memory-hungry, and that too
is cheap and plentiful since manufacturing efficiency and competition crashed prices in the
90’s. However, the advent of parallel machines was perhaps the most significant hardware
advance for first-principles work. Linking N processors together24 to perform a single task
is an obvious attraction, since in principle the available memory increases N times and the
computational time decreases by 1/N . The PWP approach works well in parallel, as first
demonstrated with the CETEP code [23] running on early parallel computers. Useful scaling
up to hundreds of processors is possible, and the biggest, most difficult calculations of the day
have always been tackled on parallel computers. Groundbreaking work in the 90’s [29, 30],
the decade which saw the coming of age of the first-principles approach [31], relied to a large
extent on the development and use of parallel machines.

3.5. Why the plane-wave pseudopotential method was and is important

The PWP approach is a way of applying DFT that is ideally balanced for the study of condensed
matter. For large, practical calculations the PWP approach is accurate, general, robust and
efficient in the right measures. The PWP method marks a watershed in first-principles
simulation. To see this, take the now-remarkable fact that at the time Car and Parrinello
wrote their paper, in their words ‘the theoretical prediction of equilibrium geometries . . . still
remains an unsolved problem in most cases’. PWP approaches broke the log-jam that was
preventing large-scale DFT applications, so that today these calculations are often the primary
source of structural and other data. More than this though, our ability to perform reliable
first-principles calculations on realistic systems is changing the way we think about condensed
matter.

along a CG search direction or an MD step—is different, as is the number of steps required.
24 In the early days of parallel computing it was hoped that N could be 10’s of thousands. In practise most machines
have fewer than a thousand processors, because inter-processor communications time and inherently serial tasks
eventually dominate, limiting useful scaling. Non-uniform memory architecture (NUMA) is a promising scheme to
allow the effective use of more processors.
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4. Running the program

Having examined the anatomy of the PWP approach I want to turn to the question of how
to apply it, what kind of results one obtains, and how to use them. This is a hopelessly big
subject, and a difficult one to discuss. In a sense it is like trying to describe good experimental
technique: the description is rather elusive but the thing itself is easily recognized. Instead of
getting bogged down in technical details I shall try to explain what simulation is and what it is
used for, in the hope that this will reveal the guiding principles of the field, for example, why
setting up and testing is so important in establishing the validity of results. I shall also look at
a few very simple elements of building a model system and setting up a simulation run.

It is worth a reminder that we use simulation because of the many-body problem: the
interactions between atoms, between charged particles and so on, make it impossible to solve
the equations describing these interactions. Once we have the means to solve these equations
there are two main uses of simulation:

• To test approximate analytic theories
• To measure the properties of ‘real’ materials

In principle these aims are compatible, but in practise they are differentiated by the ‘working
substance’ that goes into the simulation box. By this I mean the description of the interatomic
interactions that is used. An example will help to illustrate this. One of the first applications of
computer simulation was to liquids, and in particular to testing the predictions of analytic theory.
This does not necessarily require a good description of a real liquid: rather, the interactions
between molecules must be simple enough for the pencil-and-paper theory to be tractable. In
fact a lot of work of this kind used ‘hard spheres’ as the working substance. In a hard-sphere
material the only interactions are at a single sphere separation where the interaction energy
changes stepwise from zero to infinity. The simulation yields essentially exact results for this
model substance, and in a sense it takes the place of experiment. Towards the other end of the
spectrum one can use simulation to measure the properties of real materials. By this I mean
the simulated material behaves in the same way as the real material, and we use the simulation
to measure properties of interest. Here the premium is placed on getting the interatomic
interactions right. One route to this end is to construct better, more sophisticated potential
models of the interatomic interactions. This can undoubtedly lead to a realistic description of
a material, and simulations based on this technology provide a huge amount of insight into real
materials. However, there is an important difference with the first-principles approach because
we take the best description of electronic behaviour we have, quantum mechanics, and make
enough controlled approximations for it to be possible to find solutions for assemblies of atoms.
In this sense we are trying to make the working substance real rather than merely realistic. Of
course, first-principles simulations retain the ‘computer experiment’ quality discussed earlier,
in that we must use the simulation as an instrument to probe the properties of the substance
in the simulation box. Many of the technical details of a simulation have a direct analogue in
experimental technique. However, we are also furnishing the solutions of theory: the difference
compared with traditional theory is that they are arrived at using numerical methods. The fact
that simulation is both theory and experiment rolled into one has led to rather slow acceptance
and even scepticism in both camps [32].

4.1. What comes out

In first-principles simulations there are, roughly speaking, two main classes of calculation:
static, or total energy, and molecular dynamics. This reflects the fact that across the entire range
of atomistic simulation methods the basic output is the energy of an assembly of atoms in a given
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configuration, and perhaps the forces on the ionic cores, and what one does with these is largely
the same regardless of the particular approach being used. Of course a first-principles approach
also yields the electronic structure, which is usually of interest in its own right. Therefore,
from a static calculation one obtains, at a literal level, charge densities, Kohn–Sham orbitals,
relaxed ionic positions or forces and so on. However, the single most important number printed
out is the total energy. This is because it enables one to discriminate between structures and
to predict stability. This means that, for example, one can compute crystal parameters and
surface structures, or calculate energy differences between different arrangements of atoms.
The latter is exploited extensively to calculate, for example, adsorption energies, point and
extended defect energies, and relative phase stabilities. One can also consider the change in
total energy with respect to various quantities, leading to elastic constants, phonon frequencies,
reaction barriers and much more25.

Molecular dynamics is a simple but powerful idea. The ionic positions and forces for a
given configuration at time t are used in the integration of Newton’s equations of motion. The
integration must be piecewise: the forces are assumed constant over a small time interval δt .
For the new configuration, at time t + δt , new forces are computed. This whole process is
iterated as many times as is required (or can be afforded!) to generate ionic trajectories.
From these we use statistical mechanics to link the microscopic motions to macroscopic
observables. These range from simple quantities like temperature (the average kinetic energy),
through structural measurements like the radial distribution function or the structure factor,
to transport properties including diffusion coefficients, thermal conductivities and viscosities,
and fundamental thermodynamic entities including the chemical potential and free energies.

First-principles molecular dynamics (FPMD) is defined by the use of a first-principles
method to compute the ionic forces. However, there is a further distinction based on the
way the system is evolved in time. The original Car–Parrinello scheme introduced the very
appealing idea of treating the electrons as dynamic variables. This is done by associating
a mass with them, and allows the writing of an extended Lagrangian and hence equations
of motion. The second part of the trick is to make the fictitious electron masses small
enough to keep the vibrational spectra of electrons and nuclei separate. Finally, the adiabatic
principle is employed by arranging the initial conditions so that the electrons are in their
ground state, and the electronic degrees of freedom are ‘cold’ compared to the ionic ones.
Then, when the ionic cores move along their trajectories, the electrons follow adiabatically,
staying very close to the ground state. A different approach is followed in Born–Oppenheimer
dynamics, where the electronic energy is minimized for every successive configuration. There
are pros and cons to both methods: fictitious dynamics has the advantages of stability and error
cancellation [5], a smaller computational task at each iteration, and consistent forces [8], while
Born–Oppenheimer methods can employ much longer time steps to offset the greater cost of
minimizing at each configuration, and can use a variety of wavefunction and density projection
methods to improve performance. The fictitious dynamics scheme runs into serious difficulties
with metals since it is then impossible to stop rapid energy transfer from the ionic cores to the
electrons without recourse to thermostats or similar remedies [5]. However, both methods can
be made to work very well, and the advantages or weaknesses are often exaggerated.

25 Calculations that involve a response to a perturbation are in general best done within a linear-response framework
[33–36] A simpler approach is often used, relying on computing energy differences for finite displacements, as for
example in frozen-phonon calculations.
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4.2. What goes in

I have spent a lot of time describing the electronic structure theory that underpins a first-
principles simulation. One could take away the impression that the performance of the
functional was the limiting feature of a calculation, but this is very rarely true: it is in much
more mundane matters that the limits lie. In rough order of their effect on precision, these are

• The simulation supercell and its contents

• How entropy is taken into account

• Pseudopotentials

• The basis set and other computational tolerances

These make up the framework of the calculation: no matter how accurate our electronic theory
is, it is close to useless if this framework cannot support it. To take a pertinent example, many
surface studies are seriously weakened by a model system, usually a slab, that is too thin, or
worse still by failure to relax the structure to mechanical equilibrium. Of course we would like
to make all model systems so large that any effects due to their finite size were negligible, but
this is not possible. On the other hand we cannot sail too close to the wind, and we must resist
the temptation to draw conclusions that we doubt would survive if we did the calculations on
a better model system with tighter tolerances.

What I am definitely not saying is that our model systems must capture every feature of
the real systems they correspond to. This is just not possible. What we always have to accept
is that we work with an idealized system which should capture the essence of the scientific
problem. Take surface studies as an example. Surface scientists experiment on carefully-
prepared crystals under ultra-high vacuum, but even under these special conditions the surface
is far from the theorist’s ideal. It is stepped, full of defects, probably covered in hydrogen
and other impurities, and at 100–200 K, whereas our models are flat, defect-free and almost
always at zero K. The value in studying the model system is thus to make definitive statements
about an idealized system. To be able to make such definitive statements we must follow
some guiding principles in building and exploring a simulation model. First and foremost,
we must do exactly what has just been said: we must explore the predictions of a model,
without attempting to fit its properties to experiment or to our own intuition. Unlike some
other approaches, first-principles simulation is not a fitting and extrapolation exercise. Neither
is the main point to ‘agree with experiment’! Going hand in hand with this is the need to
understand how all the various choices we have made in setting up the calculation affect the
results. We already have made a major choice by using DFT with an approximate functional,
and this carries implications for the accuracy of the calculation. Before considering these
though, the precision of our results, in other words how uncertain we are that ‘the total energy
is x eV’, must be determined. Our results will vary with system size, number of k-points,
choices in constructing the pseudopotential, the tolerances applied to minimization of the
electronic energy or in structural relaxation, and so on. These model parameters must be
varied to improve precision in the quantities of interest, so ideally one tests the variation in the
latter with respect to the former. Of course it is not always possible to do the whole calculation
many times with different parameters, and instead suitable quantities (the unit cell parameter,
bond lengths, surface energies, a single vibrational frequency . . .) are used to test the setup. All
of this is just good scientific practise in the context of computer simulation. Having quantified
the uncertainty in our results, we are finally in a position to say what the model predicts. This
is both a statement about the model system, and about DFT applied to that model.
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4.3. Trump cards

A great strength of all simulation approaches is that no thermodynamic conditions, no matter
how extreme, are out of bounds. Simulations can be performed at any pressure or temperature.
This is always useful, but in certain situations it is crucially important. For example, earth
science requires knowledge of mineral phases and compounds under pressures as great as 350
GPa found in the Earth’s mantle and core, but the best diamond-anvil cells can only reach
around 150–200 GPa. High-pressure phase diagrams determined from first principles are
therefore elevated to the status of primary or even unique information. The same applies to
temperature, where examples might include nuclear reactors (2000–3000 K) and the Earth’s
core (∼6000 K). These examples also show how simulations may be applied to systems that
are physically inaccessible.

A related advantage is that every conceivable atomic-scale detail is available to the
simulator. As a simple example, the precise positions of the ionic cores is trivially known
from a calculation, while experiments must always use indirect methods (x-ray or electron
diffraction, neutron scattering) or probes (STM and AFM, ion scattering). These comments
apply equally well to electronic properties. In general it is of course possible to relate this
microscopic data to observables, and the onus is on the simulator to exploit this link. Access
to atomic details need not be passive, and any number of thought experiments may be played
out on the computer. Good examples include application of constraints and searching for
transition states, and ‘numerical alchemy’, where atomic identity is transmuted in the course
of free energy calculations [37]. Thus, even if we are interested in the physical properties
of real materials, we need not follow a physical path in their determination. The trickery
employed by the simulator in this context is a major part of the art of the approach.

4.4. What we learn

Despite the remarkable advances of recent years, I think it would be wrong to hope for a time
when we could plug any system into our codes and perform a perfect simulation, thereby
usurping experiment forever. Such a pursuit would not be science in any case: do we really
want to be reduced to saying ‘because the computer says so’ when asked why? What we really
seek is more powerful ways of thinking that lead to new ideas and concepts. Simulation is
increasingly able to help us find such insights.

First-principles simulation studies, or better, the conclusions from them, may be divided
into three categories. There are studies that provide reference or benchmark data for ideal
systems, ones which reveal new ideas or mechanisms, and ones which are genuinely predictive.
It goes without saying that in all cases we need precise answers, but only in the first case are
we also seeking absolute accuracy. Some examples will help to make these points.

Great strides have been taken in determining surface structures from first principles. A
spectacular success and a real milestone in the story was the determination of the 7 × 7
reconstruction of the (111) silicon surface in 1992 [38, 39]. Another good example is the
explanation of anomalous thermal contraction of the Al (110) surface [40]. Structural studies
of oxide surfaces are particularly useful because oxide surfaces are the least well characterized
by experiment. Oxides are inherently complex crystallographically, and the majority are good
insulators. In addition, transition-metal oxides readily depart from stoichiometry. These
factors make experiments difficult. The (110) surface of TiO2 must be the most studied of
all oxide surfaces, yet the details of its structure remain controversial. The debate centres
on the position of the so-called bridging-oxygen atom relative to the substrate (see figure
2). A series of first-principles studies [41–43] had asserted that the distance between the
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bridging-oxygen atom and the nearest titanium atom, was around 0.3 Å longer than found
in experiment. All these calculations employed quality methods, large slabs to model the
surface and full structural relaxation. In the details of the other surface atom positions no
such discrepancy existed. Muscat et al undertook rigorous benchmark-style calculations to
resolve this question [44]. By careful application of DFT, quantifying all uncertainties for
their calculations, they arrived at a surface structure which could honestly be labelled as the
‘DFT answer’. This answer still disagreed with experiment, but of course the difference was
that a fixed point had been established, providing a platform for further investigations. These
revealed a surprising answer to the riddle. Soft anharmonic modes involving the bridging
oxygen atom are the likely cause of mis-interpretation of the experimental data [44].
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Figure 2. The (110) surface of rutile. Light and dark spheres indicate titanium and oxygen ions
respectively. (a) perspective view showing slab geometry. (b) The (110) surface unit cell. The
fivefold- and sixfold-coordinated titanium sites and the bridging oxygen site are labelled 5f, 6f and
BO respectively. (c) Side view. The relaxation of the labelled ions is discussed in reference [?]

A good recent example of completely predictive work comes from Mike Gillan’s group
and their work on the properties of the Earth’s core. Of course, such studies are bound to be
predictive because they treat systems that experiment cannot access directly. As mentioned,
simulations can be performed under any conditions, and here that strength is put to good
use. One of the key questions addressed was ‘what is the viscosity of the Earth’s core?’. It
is an important question because seismic measurements rely on such basic data on the core
and mantle, and theories of the Earth’s magnetic field depend directly on the properties of
the core. A remarkable range of answers was to hand, spanning no fewer that twelve orders
of magnitude. Using first-principles MD, Gillan and co-workers calculated the viscosity of
liquid iron under Earth’s core conditions, and found that their model gave an answer near the
lower end of that range [45]. To be fair, there are a huge number of factors which could affect
this answer: a small model system, neglect of the effect of impurities, technical details of
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the calculations such as the treatment of d electrons and the length of the simulations, and
so on. Nevertheless, even allowing for large uncertainty in their results, they have succeeded
in closing by many orders the range of uncertainty in the real value. This in turn will allow
progress through greater confidence in a key piece of geophysical data.

The case study that follows should illustrate how mechanisms nay be revealed by first-
principles simulation, so I’ll give little further discussion here.

5. A case study: water chemistry at an oxide surface

Interfaces between oxides and water or aqueous solutions are ubiquitous, occurring in the
natural environment, for example in soils and aquatic systems, and in technological applications
such as catalysis and gas sensing. The interfacial chemistry is pivotal to a huge diversity of
phenomena and processes, ranging from the weathering of rocks to electrochemistry. For a
variety of reasons it is also very challenging to study. The upshot is that our fundamental
knowledge is poor for these extremely important systems. Here I hope to show that first-
principles studies can be used to enrich our understanding of oxide surface chemistry. I will
highlight some new ideas that have emerged, and demonstrate the distinct but complementary
role that simulations can play alongside theory and experiment. This case study illustrates
many features of the simulation approach: there is re-interpretation of experiment; new ideas
are generated and some prediction attempted; a range of techniques and styles of calculation
are employed; there is the need to understand how approximations affect results; simulation
results are connected to experimental ones; and it shows what conclusions may safely be drawn
even at the limit of accuracy of the method.

This study is focused on titanium dioxide surfaces. It addresses two main questions:
how does water adsorb on the (110) surface, and can apparently conflicting experiments be
reconciled?

The water–TiO2 system has attracted more attention than any other comparable system,
starting from the observation of the photoelectrolysis of water on rutile TiO2 surfaces [46].
However, TiO2 has now become a model transition-metal oxide system for both theory and
experiment. A vast effort has gone into studying the (110) surface of the rutile-structured form
of TiO2 (see figure 2). All the calculations here deal with this surface. Titanium dioxide is
more than just a scientific curiosity though. It is widely used in powder form as a white pigment
and opacifier, and is found in paints, plastics, paper, cosmetics, foodstuffs and sunblock. It
is also used as a supporting material for metal catalysts. Recently, many interesting new
applications of the material have been found, for example in biological waste treatment, solar
panels and self-cleaning glass coatings, all of which rely on the photocatalytic properties of
TiO2 nanoparticles.

Titanium dioxide has a 3.1 eV bandgap [47], making pure crystals transparent to visible
light. This is what makes TiO2 powders such good white pigments, the tiny crystals scattering
across the visible spectrum by internal reflection. It is a d0 transition-metal oxide: the
valence band is formed from O2p states, and the conduction band is predominantly Ti3d
at its lower edge. Under ambient conditions, TiO2 is commonly found in either the rutile or
anatase structures, though its full phase diagram is quite rich [48]. The structural motif is
the octahedron formed by the six nearest oxygen neighbours surrounding the titanium atoms.
The rutile structure, shown in the figure, is orthorhombic. The rutile (110) surface is shown
in figure 2. Some details of its geometry will turn out to be very important. The bridging-
oxygen (bo) atoms sit proud of the surface by about 2 Å making the surface corrugated. They
conceal sixfold-coordinated (5f) titanium atoms, which lie in-plane with fivefold-coordinated
(5f) titaniums and some in-plane oxygens. On chemical grounds it seems reasonable that the
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under-coordinated 5f site should be basic and therefore a good candidate for water adsorption,
while the bridging oxygens may be expected to be acid sites.

From experiment, it has variously been proposed that on the (110) surface, water adsorbs
molecularly and only dissociates at defect sites [49], dissociatively at low coverages and
thereafter molecularly [50], either molecularly or dissociatively depending on temperature [51],
or that the surface is inert [52]. One point of consensus is that if dissociation does occur, it is
only at low coverages. In contrast, theorists were unanimous in predicting dissociation at all
coverages [53–57]. They all looked at the adsorption of a single water molecule at the titanium
5f site, employing a range of first-principles techniques.

Over the last couple of years my co-workers and I have pursued a programme of work
aimed at unravelling this question. The starting point was to check that previous theoretical
work had not simply missed a possible adsorption site. To do this we used FPMD to explore
the surface and its interaction with water. This is a simple idea: one chooses a variety of initial
configurations, in this case placing a water molecule above various positions on the surface
and in a variety of orientations. Then the system is ‘let go’ and the molecule finds its own
way down to the surface, or sometimes is repelled into the vacuum. This approach can greatly
increase our confidence in having found all possible sites for the molecule, but for it to work
a number of conditions must be met:

• It helps if barriers on the energy surface are small compared to the temperature
• There must be relatively few degrees of freedom to explore (mainly molecular

conformation)
• A few initial configurations must be enough to cover most possibilities

In the present case we looked at the adsorption of a single molecule in a 2×1 cell of the (110)
surface using three starting points. The choice of these starting configurations was guided by
chemical reasoning: the first hopes to see the molecule react at the 5f site, the second tries
to access the 6f site, and the third looks for hydrogen bonds with the bridging oxygen atoms.
Each of these was run for 0.5–1.0 ps, and in fact only the first yielded a bound molecule. We
took the end configuration from this run and minimized the structural energy by relaxing all
the ions to zero-force positions. The resulting geometry is shown in figure 3.

This certainly looks like a dissociated state, and therefore ties in with previous theory.
There are two hydroxyl groups, one formed from a bridging oxygen and donated proton
(bridging hydroxyl or BH), and one from the water minus a proton (terminal or TH). So
far nothing is different, and all the discrepancies remain. However, we can go further in the
analysis. Experiment does not produce pictures like figure 3, but infers structures from indirect
measurements. One such technique is high-resolution electron energy loss spectroscopy
(HREELS), which measures the vibrational spectra of species adsorbed on surfaces. Mike
Henderson had performed HREELS measurements on the water-rutile (110) system, and to
compare we used FPMD to compute the power spectrum for the vibrations of the OH groups26.
The results is shown in figure 4, and reveals the first surprise. OH groups are strongly bound,
though the vibrational frequency of their stretch mode would be affected slightly by their
environment. Therefore, the most obvious expectation would have been to see two sharp,
high-frequency features in this spectrum. Instead, only one of the OH’s gives this sharp
feature, the other contributing a much broader and fuzzier signal.

This was real progress, since the high-frequency region of Henderson’s HREELS spectra
exhibited exactly this broadening. Moreover, inspection of the MD trajectories via computer

26 The vibrational frequencies of the protons are shifted in these simulations because an artificially-high mass was
used for them. This is a technical trick employed to allow a longer time step to be used. It does not affect equilibrium
statistical-mechanical quantities, but the shift in frequencies should be borne in mind.
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Figure 3. Geometry of a single H2O at half-monolayer coverage on the (110) surface. Indications
as in figure 2 and in addition small grey spheres represent hydrogen.

Figure 4. The calculated vibrational spectrum for hydrogen atoms in the system shown in figure
3.

graphics and ‘movies’ readily showed what was causing it. The H on the bridging hydroxyl
was able to make considerable excursions towards the TH group, and in doing so was clearly
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experiencing much softer restoring forces. Substrate vibrations were strongly involved, as they
altered the distance between BH and TH groups considerably. This picture of dissociation is
much more complicated than we are accustomed to. Moreover, the energy separation between
dissociated and molecular forms was small: static calculations showed that the structure in
figure 3 has a corresponding adsorption energy of 0.91 eV per H2O, while H2O in molecular
form is metastable on the surface, and its adsorption energy is 0.87 eV. The experimentalists
were very confident in stating that molecular water is present at almost all coverages: their
most persuasive evidence came from the HREELS data, which showed a clear signal from
the medium-frequency ‘water wave’ vibrational mode in which the two ‘arms’ of the water
molecule move in opposite directions. This is entirely absent in figure 4, where it should appear
around the centre of the plot. We have to ask at this point whether theory and experiment are in
agreement. Although there is a metastable molecular state, it remains that the most stable state
is dissociated, and its key signature, its vibrational spectrum, does not agree with experimental
measurements.

What are the possible resolutions of this situation? Perhaps the barrier between the
dissociated and molecular forms is large, and most H2O is trapped in the metastable molecular
state. Perhaps the adsorption state is in some way coverage dependent. Perhaps intermolecular
interactions affect the adsorption state. Whatever the case more work was required.

Figure 5. Geometry of two H2O adsorbates at monolayer coverage on the (110) surface. Indications
as in figure 3.

We chose to work on the hypothesis that inter-molecular interactions are important
[58–60]. The next step therefore was to increase the coverage to one monolayer by adding
a second molecule to the simulation. This was done as before, by choosing a number of
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starting positions and tracking their evolution with MD. The outcome was the adsorption
geometry shown in figure 5. This was quite unexpected, the second molecule adsorbing intact
because of its strong hydrogen bond to the terminal OH group. This configuration is stable
over pico-seconds of MD at around 150 K, and subsequent static calculations confirmed it to
be the lowest energy configuration for the two molecules. However, this so by only a small
margin, a point I shall return to shortly. The vibrational spectra for the protons in this ‘mixed’
configuration are shown in figure 6, and the sought-after water-wave feature is evident at 29
THz. Thus, theory was at last giving a picture that was consistent with experiment. Starting
with monolayer coverage, what are the main conclusions from the calculations? First, we
have that inter-molecular interactions can affect the adsorption state of H2O. Also, it seems
possible that water can adsorb in both molecular and dissociated forms at the same time due to
these interactions. Remember that there are no defects (e.g. oxygen vacancies) on this surface,
so dissociation need not be linked with defect sites. However, the results do not show that a
monolayer consists of a 50/50 mix of OH groups and water molecules. More configurations
would need to be explored to shed light on this question. We might also tentatively suggest
that intermolecular interactions would be important at other coverages, but again this needs
more work. However, at this point we can certainly help re-interpret the experiments and
to resolve the various discrepancies in the light of these findings. First of all, we can see
why previous theoretical work failed. It simply did not take into account the hydrogen bonds
explicitly, but instead imposed the restrictions of a 1×1 periodicity. Next, at ‘low’ coverage
the calculations still predict dissociation, but for single molecules. However, it seems plausible
that at low coverages the H2O molecules will cluster because of their interactions, provided
the H2O is able to diffuse on the surface. Then the calculations suggest that some H2O will
remain in molecular form, which if true might explain the data showing that molecular water
is present at all coverages. Remember too that for a single H2O there is a metastable molecular
state: an understanding of the adsorption dynamics would help to decide whether adsorbing
molecules get trapped in this state. Our results do indicate that dissociation does occur on non-
defective surfaces. Finally, we have seen that small energy differences separate dissociated
and molecular forms, and that the protons are mobile at moderate temperatures. These suggest
that the observations may indeed be temperature dependent, in other words, the adsorption
state (and its vibrational and other signatures) may depend on temperature. Calculations of the
free energy barrier between dissociated and molecular states would help to to solidify these
speculations.

I’ll return now to the small energy differences already mentioned. The mixed state of
figure 5 has an adsorption energy of 1.01 eV per H2O. The two other obvious candidate states
are metastable: with two molecules the energy is 0.99 eV, and with all OH’s it is 0.91 eV.
The latter is sufficient to state reliably that an all-OH configuration may be ruled out, but the
difference between all molecular and mixed is within the uncertainty of the method. This is
despite our attempts to refine the calculations in their weakest aspect by increasing the slab
thickness. The fact remains that a change in pseudopotential, functional or k-point sampling
could tip the balance by an equal amount in the opposite direction. One has to ask if this
weakens the arguments I have just outlined. The answer is no, because the key points remain
intact: these are the two ideas about inter-molecular interactions and a ‘interacting’ dissociated
H2O, and their consequences for the vibrational spectra. More work will strengthen this story
though, and recent work on the coverage dependence of adsorption state reinforces these key
conclusions as well as revealing more unexpected behaviour [61].

It is very important to realise that without the experimental data this full and appealing
interpretation would not be possible. By combining evidence from theory and experiment we
generate far more than the sum of the parts, and can make stronger conclusions than we could
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Figure 6. The calculated vibrational spectrum for hydrogen atoms in the system shown in figure
5.

from separate analyses. Exploiting this virtuous circle is a must.

6. CASTEP

Mike Payne wrote the first version of CASTEP in 1986 [2]. He took about two months to
produce a fully-functioning program: cubic cell, local pseudopotentials, a simple minimizer,
the total energy and the ionic forces. He employed the practises of that time, using
FORTRAN77 and ‘functional programming’, that is, basing the program structure on the
operations that must be performed on the data. By 1992 he and more than ten co-authors
had added many features to the code: arbitrary cell shape, stresses, partial occupancies
for metals, non-local pseudopotentials, real-space pseudopotential evaluation, molecular
dynamics, parallel execution and much more. The following years saw many more authors and
more developments, including gradient-corrected functionals, spin-polarization and ultrasoft
pseudopotentials. By the late ‘90s the code stood at around 120 000 lines, all cast around the
original design, all in FORTRAN77.

This is how almost all scientific codes are developed. A new idea or method is implemented
in a fairly simple form as quickly as possible. Early on the need is to get working quickly so as
to capitalize in the new field. Improved techniques are developed and added, and sometimes
radically different new methods must be incorporated, but very rarely is a code completely
rewritten. The reasons for this are as much to do with scientific careers and funding as they are
with software practises and training, as we examine more fully elsewhere [62]. In a nutshell,
no-one can afford to spend the 20–30 man-years required to redesign and implement a mature
code, let alone do it with high-quality software engineering. However, if the code works and
works well, why worry?

The problem is that development grinds to a halt. Changes start to take longer and
longer, partly because more lines of code need to be altered (the changes are not localized),
partly because the structure grows more and more complicated. One must know how almost
everything in the code works in order to add something new, and this becomes daunting,
especially for those new to the code. Debugging becomes very difficult. New ideas are
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simply not explored. These are very bad things indeed because science is all about change and
exploration.

So far it might seem that the argument is as follows: once methods and algorithms have
become tried and tested it is worthwhile to rewrite a code in the ‘right’ way for them. This
is certainly so, but it is only half the story. If we were to do this using the same software
approach we would soon run into the same old problems once new developments were tried.
The problem is this: it is very easy to write a simple program quickly in a language such
as FORTRAN77, indeed that is one of their advantages. However, this does not lay a good
foundation for a large code, as no design thought has been given to the full range of purpose
and function the code must have. What works for a small code is terrible for a large one. Large
codes must be specified and designed.

A brief digression is required here to introduce some ideas. Over the last decade ‘object-
oriented’ design (OOD) and coding have supplanted other approaches in almost every field
where large codes are required. Object-oriented designs and programs are more robust, easier to
develop and debug, and far more extensible than equivalent functional or structured programs.
In the context of scientific programming there are two concepts that are absolutely crucial to
achieving these advantages, and they are data hiding and data encapsulation. Data hiding,
and to some extent data encapsulation, are familiar ideas in mathematics. Writing f (x) to
denote a function of a single independent variable hides the details of what that function is,
what its value is at any particular point x. In just the same way we can write a software
function, a piece of code that returns f (x) if given a value of x, without the user needing to
see the inner workings of the function. This is data hiding. Data encapsulation goes much
further than this. Continuing the analogy we know that there are many operations allowed
on f (x), such as addition, subtraction, integration, differentiation, and so on. If we imagine
writing a piece of software that encapsulates these operations as well as the data, we have an
‘object’. The user may then not only interrogate the object for the value of f (x), but also
f ′(x), f (x) + 102.6 or any other operation that is on offer. The programmer defines which
operations may be performed on the data, and the only way to interact with the data is through
these operations [63]. This is not full object orientation but it is already of immense value.
Here are some reasons why:

• The data are protected from side effects
• There is no need to know the data structures at every point in a large program
• Changes are mostly local to the object
• Almost forces the designer to consider the best generalizations of operations on the data.

The argument for encapsulation becomes clear when changes to the data structures or operations
upon them are considered. Since the interface with the object is its set of operations, changes
inside the object do not require changes elsewhere. In other words, the changes are localized.
In contrast, changes to the data structures in a non-OO code must be echoed throughout,
wherever that structure is accessed. We note that this produces a natural reticence to make
major changes to a large program, even when those changes are highly desirable.

6.1. New CASTEP

Over the last two and a half years we [64] have specified, designed and written a completely
new version of CASTEP. The code is written in FORTRAN90 to a modular design. A great
deal of our efforts went on getting this design right, and in fact coding did not start until almost
a year after the project began. The key achievement has been to abstract, in the manner just
described, the data and associated operations that are required in a first-principles calculation.
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The design is complex and its description will be given elsewhere [62], but here I’ll give an
illustration of the style.

In the new code operations involving the ionic pseudopotentials, the wavefunctions, the
grids and so on reside in separate modules. For example, there are 33 operations involving
the pseudopotentials. The modules are arranged in a hierarchy, such that at the highest level
virtually all of the detail of the calculation is hidden. The high-level modules are to do
with the overall functions of the code and the major elements of implementation: electronic
minimization, first derivatives (forces and stresses), second derivatives, band structure, and so
on. Beneath these ‘Functional’ modules lie the ‘Fundamental’ modules that provide all of the
PWP machinery: density, wavefunctions, ions and grids. Beneath all of this lie the ‘Utility’
modules: FFTs, parallel communications and others.

In principle, coding at the high level involves the use of the operations that the modules
immediately below provide and nothing more: in practise, new developments may necessitate
the addition of new operations to (any of) the modules. An example will help to illustrate
things. In the calculation of band structures a steepest-descent vector is required, and here is
a pseudocode version of the calculation:

! Calculate the kinetic energy and store delˆ2|band> in H_band
call wavinetic_energy(band,nk,ke,H_band)

! Apply the local potential
call pot_apply(pot_loc,band,nk,V_band,ener_loc)

! Add on pot_loc|band> to H|band>
call wave_add(V_band,H_band)

! Apply the non-local potential
call nlpot_apply_Vnl_ES(band,nk,ns,nl_d,ener_loc+ke,ener_nl,V_band)

! Add on V_nl|band> to total H|band>
call wave_add(V_band,H_band)

! For USP’s search direction is Sinv * (H-ES)
call nlpot_apply_Sinv(H_band,nk)

! Initial search direction is negative H|band>
call wave_scale(H_band,(-1.0_dp,0.0_dp))

The detailed meaning of the variables and calls is not required to make the main points. The
calculation takes only seven lines of code. Anyone familiar with the old way of coding may
wonder where all of the code has gone to: this calculation would have taken perhaps 200 lines
of code. Because of the data abstraction there is no need to be concerned with array limits or
data structures for the wavefunction and potentials, nor to worry about which pieces of data
need to be fetched from other nodes when running in parallel, or to remember to use library
calls to do things efficiently. All of that is taken care of in the underlying modules, and the
operations they offer up are completely general. Writing the code at the high level is a facsimile
of writing the algebra.

This is all very elegant but what are the advantages? There must be a very substantial
payback for the considerable extra effort involved, and there is: new developments are very,
very much more rapid. Not only this, but developments of much greater complexity remain
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completely manageable because the modules are largely self-contained and their interfaces
with each other rather simple. Debugging becomes much easier: the scope of a bug tends to
be within a module, and there is far less replicated code to work with. On a related theme,
optimizations once done in a module are always available. All of these characteristics are
absolutely critical because change is always necessary, the code is never finished, and new
ideas will always come along.

I have already mentioned the long design process, but it should also be understood that
this must be supported by fairly rigorous documentation. The specification of new CASTEP
now runs to several hundred pages, and it was substantially complete before coding began:
indeed, the coding was done to the specification, and this was so successful that authors in
separate institutions wrote modules that were completely compatible because they adhered
to the specification. Of course iteration was required, with the specification being updated
constantly in the light of implementation. Another major piece of documentation is the
implementation guide, which describes how the functionality of a module was achieved: the
mathematics, the algorithms and the tests. A computer scientist reading this story would no
doubt point out that we have merely adopted the classic software cycle using object-oriented
design ideas: this is true but in the scientific programming context this is a radical step.

6.2. Is there a future for the plane wave pseudopotential method?

The argument to rewrite CASTEP is predicated on the long-term utility of the plane wave
pseudopotential method. It is fair to question this view: after all, it is well known that at best
the method scales as N2 and ultimately as N3, and that to get anywhere pseudopotentials, will
all their potential problems, must be used. Many groups are striving to produce linear-scaling
DFT codes with plane-wave accuracy, and they will succeed in the end. What then is the
argument for the PWP method?

First of all, the vast majority of applications are well away from the bad scaling regime,
and will remain so for some time. For example when doing MD calculations it is often not
feasible to use a very large model system, and the electronic part of the calculation scales
as N2. A more practical restriction is that of computer size, meaning large systems are out
of reach. However, we will reach the point where N3 scaling starts to be a limiting factor.
The most promising way forward is to embed the PWP system within a cheaper method,
either semi-empirical or classical. This approach works well because it is very often the
case that only a small region of the system requires a full quantum-mechanical treatment. Of
course, for both linear-scaling codes and embedding approaches, reference calculations are
done with the PWP method. Another point is that pseudopotentials can be made to work
extremely well these days. Ultrasoft pseudopotentials are highly transferable, and the closely-
related projector-augmented wave method [65] is another alternative. Pseudopotential core
reconstruction [66] allows the computation of properties that depend on the core electrons,
such as NMR. In short, pseudopotentials are accurate and non-restrictive.

By far the most persuasive argument is that new ideas in first-principles electronic structure
calculations will always be tried first with the PWP method. This is because of the mathematical
simplicity of a plane-wave basis. A good example is the computation of response properties.
Calculations of the phonon dynamical matrix [33,34], ferroelectric phare transitions [67], solid-
state NMR chemical shifts [66] and the electron G-tensor [68] have all appeared recently, and
all used the PWP method. Developments that would take years in other frameworks take
months in the PWP scheme.

We can of course hope for further improvements the PWP method and in the algorithms
used in its application. The Car–Parrinello paper itself marked a huge step forward in methods
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rather than theory, and more recently Vanderbilt’s ultrasoft pseudopotentials brought a very
substantial improvement to the approach. As a final point, PWP codes are probably the most
‘automatic’, and therefore the most accessible to non-specialists. Classical simulations on
systems that are difficult to model with potentials, such as water and silicon, may now employ
the PWP method as an energy and force ‘engine’. At the other end of the spectrum, biosciences
is perhaps the most rapidly growing area of application for PWP calculations.

It is hard to think that DFT will be replaced by a theory of equivalent accuracy that can
be implemented at a fraction of the cost. Moreover, new functionals [69] are promising to
improve the accuracy of our calculations very considerably. As far as it is sensible to look into
the future the PWP method has an important role to play.
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